Computational Mesh Geometry and Architectural Construction;

Generating Construction Aware Quadratic Meshes Considering the Possibility of Torsion Free Nodes and Planar Faces

Thesis, M-CDC W.S 2016-17

1st Advisor: Prof. i. V. Dipl.- Ing. Hans Sachs 2nd Advisor: Dipl. – Ing. Martin Manegold Structure Consultant: Prof, Jens Uwe Schulz

Student: Amir Saadat Fard

Contents

Introduction; Goal and Brief Review

Background; Surface Discretization and Architectural Practice

Geometry; Surfaces, Meshes and Form Finding

Structure; Simulation and Analysis

Construction; Executive Detailing and Digital Fabrication

Results; Summarizing and Further Studies

Goal

Discretizing double curved surfaces, *Complex*, into a mesh which is buildable with flat sheet of Material, *Simple*

Objectives

Introducing workflow from design to construction

Explaining relationship between geometry, construction and form finding

Connecting computation tools and experimental methods

Reducing complexity of construction

Clarifying Architectural approach as emerging process

Design to Construction Process

Form finding Values
Simulation and extracting mesh
Surface from mesh
P.C lines network, P.Q mesh
Structural analysis
Executive Detailing and Construction

Surface Design and Discretization:

- . Aeronautic and Manufacturing Industries
- . Gaming; Game Processing
- . Medical Data; MRI Scans

and

. Architectural Manufacturing

Surface Discretization in Steel and Glass Architecture

Glashaus-Pavilion by Bruno Taut in Cologne

Surface Discretization in Steel and Glass Architecture

Berlin Zoo by Schlaich Bergermann

Surface Discretization in Steel and Glass Architecture

Milan trade fair, by Studio Fuksas

Form Finding Instead of Shape Drawing

Hanging Model; Force Flow

Hanging Model experimental model by Antoni Gaudi

Form Finding Instead of Shape Drawing

Soap Films; Minimum Material

Olympic Park Munich by Frei Otto Form Finding Based on Dynamic Relaxation and Soap Films

Form Finding Instead of Shape Drawing

Wet Fabric; Force Flow

Service station, Deitingen Sud, Switzerland Form Finding Based Suspended Wet Fabric

Principal Curvature

Maximum and Minimum amount of Bending K1 = 1/R1, K2 = 1/R2

Saddle surface with principal curvatures in an Arbitrary Point

Gaussian Curvature

K(-) Blue, K(0) Green, K(+) Red

Gaussian Curvature:

K= k1.k2

If K = 0 : Developable Surface

If K ≠ 0 : Double Curved Surface

Surface Discretization

U,V Parametrization of Certain Parameters in U and V Domain on Surface and Connecting them in Certain Rule of Connection, Mesh

First Visible Problem Nonplanarity

Surface Discretization

First Solution

Planar-Quadratic Meshes; Conjugate Curve Network

Curve network is conjugate If:

Tangents Build a Developable Surface

conjugate curve network of two family of A and B

Planar Quadratic Meshes; Principal Curvature Lines Network

Conjugate and Orthogonal

Only one Possibility:

Principal Curvature Lines Network

- (a) PQ strip as a discrete model of a developable surface.
- (b) Discrete developable surface tangent to PQ mesh along a row of faces

Review

PC Lines Network Process:

- 1. Finding Principal Directions at an arbitrary Point on Surface
- 2. Moving toward Directions in a very small Distance
- 3. Finding Closest Point on the Surface
- 4. Iteration Process
- 5. Finishing the Iteration Process at the edge of the Surface

PQ Mesh Generation Process:

- 1. Preparing Conjugate and Orthogonal Network of Curves
- 2. Intersection of Family A and Family B
- 3. Putting the Intersections in a certain Order
- 4. Connecting the Ordered Points; Extracting Mesh

Minimal Surface

Values to Find Smooth Surfaces;

Minimum Material Usage and Force Flow

Volume: 1000 m3

Areas: 758, 729, 484, 554, 600m2

Minimal Surface

Soap Films

minimal surfaces are curvature-continuous surfaces with vanishing mean curvature

minimizing surface area under given boundary conditions

Minimal Surface

Soap Films

Frei Otto's experimental form finding samples

Geometry

Form Finding and PQ Mesh;

Minimal Surface Simulation by

Dynamic Relaxation

Procedure:

- 1. Base Mesh
- 2. Frame and Boundary Condition
- 3. Setting Values
- 4. Simulation

Geometry

Form Finding and PQ Mesh;

Minimal Surface Simulation by

Dynamic Relaxation

Procedure:

- **5. Geometry out of Simulation**
- **6. PC Lines Network**
- 7. PQ Mesh
- 8. Prototype

Hanging Models

Catenary

Hanging chain or cable formed under its own weight when supported only at its ends
With good manner of force flow
And preserves materials avoiding bending

Hanging Models

Experimental Hanging Model Form Finding

Geometry

Form Finding and PQ Mesh;

Hanging Models

Procedure:

- 1. Base Mesh
- 2. Frame and Boundary Condition
- 3. Setting Values
- 4. Simulation

Hanging Models

Procedure:

- **5. Geometry out of Simulation**
- **6. PC Lines Network**
- 7. PQ Mesh
- 8. Prototype

Structural Simulation

Anticlastic Beam

Preprocessing:

Rhino Geometry (Nodes and Curves- Structural)

&

Border Condition

&

Material and Cross Section Properties

Material:

Structural Steel; S-355

Material Properties:

Self-weight: 78.5 [kN/m³]

Density: 7850 [kg/m³]

Elastic modulus: 2.100e+5[N/mm²]

Poisson ratio: 0.300

Cross Section:

Rectangular; B/H = 75^{mm}/120^{mm}

Structure

Structural Simulation

Anticlastic Beam

Processing:

FEM – Sofistik

Solvers:

Load, ASE

Structural Simulation

Synclastic Beam

Preprocessing:

Rhino Geometry

(Nodes and Curves- Structural)

&

Border Condition

&

Material and Cross Section Properties

Material:

Structural Steel; S-355

Material Properties:

Self-weight: 78.5 [kN/m³]

Density: 7850 [kg/m³]

Elastic modulus: 2.100e+5[N/mm²]

Poisson ratio: 0.300

Cross Section:

Rectangular; B/H = 120^{mm}/220^{mm}

Structure

Structural Simulation

Synclastic Beam

Processing:

FEM – Sofistik

Solvers:

Load, ASE

Anticlastic Beam

Nodal Displacement

Node Number	X-Coordinate(m)	Y-Coordinate(m)	Z-Coordinate(m)	Z- Displaced Node Numbers	Z- Displacement(mm)
1001	7.791	8.838	-1.271	1019	0.1401
1002	7.792	-8.838	-1.275	1020	0.1153
1003	6.019	8.501	-2.305	1021	-0.0582
1004	6.020	-8.501	-2.309	1022	-0.2466
1005	4.096	8.284	-3.063	1023	-0.3254
1006	4.096	-8.284	-3.066	1024	-0.2459
1007	2.072	8.161	-3.524	1025	-0.0570
1008	2.073	-8.161	-3.528	1026	0.1165
1009	0.000	8.122	-3.679	1027	0.1408
1010	0.000	-8.121	-3.683	1028	0.1121
1011	-2.073	8.161	-3.524	1029	0.0896
1012	-2.073	-8.161	-3.527	1030	-0.0516
1013	-4.096	8.284	-3.061	1031	-0.2043

Nodal displacement for parabolic beam structure in Z.

(Min = -0.376mm, Max = 0.178mm)

Anticlastic Beam

Data Exchange, Sofistik to Rhino

Sofistik Nodes

Mesh after Displacement

Anticlastic Beam

Planarity Before-After

Synclastic Beam

Nodal Displacement

Node Number	X- Coordinate(m)	Y- Coordinate(m)	Z- Coordinate(m)	Z-Displaced Node Numbers	Z- Displacement (mm)
1001	13.220	7.495	0.063	1002	-0.1339
1002	12.499	8.125	1.095	1003	-0.2536
1003	11.779	8.820	2.021	1004	-0.3425
1004	11.055	9.586	2.844	1005	-0.3868
1005	10.297	10.437	3.583	1006	-0.3674
1006	9.433	11.409	4.272	1007	-0.2476
1007	8.337	12.566	4.936	1008	0.0368
1008	6.761	13.992	5.575	1009	0.5187
1009	4.335	15.692	6.043	1010	1.0067
1010	-0.031	17.448	5.970	1011	0.4957
1011	-4.355	15.679	6.042	1012	0.0106
1012	-6.772	13.985	5.572	1013	-0.2710
1013	-8.342	12.566	4.934	1014	-0.3867

Nodal displacement for synclastic beam structure in Z. (Min = -0.405mm, Max = 1.1mm)

Structural Analysis

Synclastic Beam

Data Exchange, Sofistik to Rhino

Sofistik Nodes

Mesh after Displacement

Structural Analysis

Synclastic Beam

Planarity Before-After

Conventional Meshes

and

Node Construction

when

neighboring normal vectors are not coplanar

Construction

Conventional Meshes

and

Node Construction

PQ Meshes

and

Torsion Free Nodes

Coplanarity of neighboring normal vectors in PQ mesh

PQ Meshes

and

Torsion Free Nodes

Node Design Process

PQ Meshes

and

Torsion Free Nodes

Construction Benefits

- 1. Alignment of Axes' Plane
- 2. No torsion Force in Nodes
- 3. Capability of Offset Meshes
- 4. Less Complexity in the Node Construction
- 5. Vertical Extruded Central Element

PQ Meshes and Flat Sheets of Material

Gaussian curvature of normal stripes

PQ Meshes and Flat Sheets of Material

Unrolling Normal Stripes

Discretized version of developable surface

Detailing Process

Mesh, normal vectors and normal plane at each node

Nodes and Neighbor edges

Specifying the length of connectors (evaluating edges)

Detailing Process

Projecting the evaluated curve on normal plane

Extracting connector's boundary

Generating cuts on connectors based on beam's thickness

Detailing Process

Parameters

- 1. Beam Thickness
- 2. Connector Thickness
- 3. Beam Height
- 4. Thickness Tolerance
- 5. Pin Height
- 6. Pin Leg Radius
- 7. Scale Factor
- 8. Beam's Corner Fillet Radius
- 9. Connector's Corner Fillet Radius
- 10. Position of the Connectors on their Normal
- 11. Pin position Radius
- 12. Connector's Size
- 13. Position of Pin on Connectors

Emerging Architecture

Process of Emerging Architecture

Project Process

Benefits and Necessity of the Project

Benefits

Geometry

PQ Faces

Coplanar Normal Vectors

Multi-Layer Mesh

Material

Flat Sheets of Material

Construction

Not Complex Connectors

Faster Production

Low Cost Production

Fast Assembling and Disassembling

Easy Transportation

Necessity

Accentuating on Process and Objectives

Implementing Values in Design-Construction Process

Showing Practical Data Transformation

Conclusion

Process and Values

Conclusion

Other Possible Values

Form Finding Values:

- Natural light penetration
- Gathering and Meeting Points Density
- Access and transition

Construction and Material Settings:

- Type of Material (Masonry, Steel, Composites, Recycling)
- Same Parts
- ...

Checking in Real Condition:

- Users' Reaction
- Recycling duration
- Environmental Affects
- ...

Executive Detailing:

- Transportation
- Local or International Technology
- Gray Energy
- ...

Conclusion

Further Question about PQ Mesh

Surfaces with Constant -(Blue) and +(Red) Gaussian curvature

Surface with variable - and +Gaussian curvature